Part Number Hot Search : 
3K7002 CD5338B 2A102 UM400005 MP1X0 2N3015 HT82M AC10EGML
Product Description
Full Text Search
 

To Download AMMC-5040 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  agilent AMMC-5040 20 C 45 ghz gaas amplifier data sheet description the AMMC-5040 is a high gain broadband amplifier designed for both military applications and commercial communication systems. this four-stage amplifier has input and output matching circuitry for use in 50 ohm environments. it is fabricated using phemt integrated circuit structures that provide excep- tional broadband performance. the backside of this chip is both rf and dc ground. this simpli- fies the assembly process and reduces assembly related perfor- mance variations and costs. this mmic is a cost effective alterna- tive to hybrid (discrete-fet) amplifiers that require complex tuning and assembly process. features ? frequency range: 20 C 45 ghz ? high gain: 25 db ? gain flatness: 1.5 db ? return loss: input: 17 db, output: 11 db ? output power: p -1db = 21 dbm at 38 ghz p -3db = 22.5 dbm at 38 ghz applications ? broadband gain block ? broadband driver amplifier ? point-to-point radio ? lmds ? ew ? instrumentation ? frequency multiplier (x2 and x3) absolute maximum ratings [1] symbol parameters/conditions units min. max. v d1,2-3-4 drain voltage v 5 v g1,2-3-4 gate voltage v -3.0 0.5 i dd total drain current ma 550 p in cw input power dbm 21 t ch operating channel temperature c +160 t b operating backside temperature c -55 +75 t stg storage temperature c -65 +165 t max maximum assembly temp (60 sec max) c +300 notes: 1. operation in excess of any one of these conditions may result in permanent damage to this device. chip size: 1720 x 760 m (67.7 x 29.9 mils) chip size tolerance: 10 m ( 0.4 mils) chip thickness: 100 10 m (4 0.4 mils) pad dimensions: 75 x 75 m (3 0.4 mils)
2 AMMC-5040 dc specifications/physical properties [1] symbol parameters and test conditions units min. typ. max. v d1,2-3-4 drain supply operating voltage v 2 4.5 5 i d1 first stage drain supply current (v dd = 4.5 v, v g1 = -0.5 v) ma 50 i d2-3-4 total drain supply current for stages 2, 3 and 4 (v dd = 4.5 v, v gg = -0.5 v) ma 225 v g1,2-3-4 gate supply operating voltages (i dd = 300 ma) v -0.45 v p pinch-off voltage (v dd = 4.5 v, i dd < 10 ma) v -1.5 ch-b thermal resistance [2] (backside temp. t b = 25 c) c/w 49 notes: 1. measured in wafer form with t chuck = 25 c (except ch-bs .) 2. channel-to-backside thermal resistance ( ch-b ) = 58 c/w at t channel (t c ) = 150 c as measured using the liquid crystal method. thermal resistance at backside temperature (t b ) = 25 c calculated from measured data. rf specifications [3,4] (v dd = 4.5v, i dd (q) = 300 ma, z 0 = 50 ? ) units broadband narrow band typical performance ghz 21 C 40 21 C 24 27 C 29 37 C 40 40 C 45 symbol parameters and test conditions min. typ. typical |s 21 | 2 small-signal gain db 20 25 25.5 25 22.4 21.3 ? |s 21 | 2 small-signal gain flatness db 1.5 0.2 0.4 0.2 1.2 rl in input return loss db 15 17 17 18 21 17 rl out output return loss db 8 11 10 14 13 13 p -1db output power @ 1 db gain compression dbm 19.5 20 22.5 21 20 f = 22 ghz p -3db output power @ 3 db gain compression, f = 22 ghz dbm 21 21.6 23.5 22.5 21.5 oip3 output 3 rd order intercept point, dbm 30 29 29 31 27 ? f = 2 mhz, p in = -8 dbm, f = 22 ghz |s 12 | 2 isolation db 40 55 55 55 55 55 notes: 3. data measured in wafer form, t chuck = 25 c. 4. 100% on-wafer rf test is done at frequency = 21, 24, 27, 29, 37, 40 and 45 ghz, except as noted.
3 AMMC-5040 typical performance (t chuck = 25 c) figure 1. gain, v dd =4.5 v, i dd =300 ma. frequency (ghz) gain (db) 20 45 25 30 35 40 30 26 22 18 14 10 figure 2. gain and drain voltage, i dd =300 ma. frequency (ghz) gain (db) 35 30 25 20 15 10 5 0 20 45 35 30 25 40 3v 3.5v 4v 4.5v 5v figure 3. input and output return loss, v dd =4.5v, i dd =300 ma. frequency (ghz) return loss (db) 0 -5 -10 -15 -20 -25 20 45 35 30 25 40 s11(db) s22(db) figure 4. gain and drain voltage, i dd =350 ma. frequency (ghz) gain (db) 30 25 20 15 10 5 0 20 45 35 30 25 40 3.5v 4v 4.5v 5v figure 5. gain and drain voltage, i dd =4.5v. frequency (ghz) gain (db) 35 30 25 20 15 10 5 0 20 45 35 30 25 40 150ma 200ma 250ma 300ma 350ma 400ma figure 6. input return loss and drain voltage, i dd =350 ma. frequency (ghz) input return loss (db) 0 -5 -10 -15 -20 -25 -30 20 45 35 30 25 40 3.5v 4v 4.5v 5v
4 AMMC-5040 typical performance (t chuck = 25 c) figure 7. output return loss and drain voltage, i dd =350 ma. frequency (ghz) output return loss (db) 0 -5 -10 -15 -20 20 45 35 30 25 40 3.5v 4v 4.5v 5v figure 8. output power (p -1db ) and drain current, v dd =4.5v. frequency (ghz) p1db (dbm) 25 20 15 10 5 20 45 35 30 25 40 100ma 200ma 300ma 350ma figure 9. output power at p -1db and p -3db, v dd =4.5v, i dd =300 ma. frequency (ghz) p1db & p3db (dbm) 26 24 22 20 18 16 20 45 35 30 25 40 p -1db p -3db figure 10. noise figure, v dd =4.5v, i dd =300 ma. frequency (ghz) nf (db) 15 13 11 9 7 5 20 45 35 30 25 40 figure 11. output power (p -1db ) and drain voltage, i dd =300 ma. frequency (ghz) p1db (dbm) 25 23 21 19 17 15 20 45 35 30 25 40 3.5v 4v 4.5v 5v figure 12. output 3 rd order intercept point, v dd =4.5v, i dd =300 ma. frequency (ghz) ip3 (dbm) 35 30 25 20 15 10 20 45 35 30 25 40
5 AMMC-5040 rf performance for frequency multiplier applications typical performance as a x2 frequency multiplier, input power optimized for conversion gain [1] input frequency input power output frequency output power conversion gain (ghz) (dbm) (ghz) (dbm) (db) 10 6 20 18.2 12.2 11 6 22 18.9 12.9 12 6.5 24 20.5 14.0 13 6.5 26 20.8 14.3 14 7.5 28 20.0 12.4 15 7.5 30 19.6 12.1 16 7.5 32 18.0 10.5 17 7.5 34 16.0 8.5 18 7 36 11.7 4.7 19 7 38 7.1 0.1 20 3 40 7.0 4.0 21 5 42 10.7 5.7 22 5 44 11.3 6.3 23 5 46 11.7 6.7 typical performance as a x2 frequency multiplier, input power optimized for output power [1] input frequency input power output frequency output power conversion gain (ghz) (dbm) (ghz) (dbm) (db) 10 10 20 20.2 10.2 11 10 22 20.9 10.9 12 10 24 22.0 12.0 13 9.5 26 22.2 12.7 14 9.5 28 20.8 11.3 15 9.5 30 20.6 11.1 16 9.5 32 19.0 9.5 typical performance as a x3 frequency multiplier [1] input frequency input power output frequency output power conversion gain (ghz) (dbm) (ghz) (dbm) (db) 7 14.3 21 19.6 5.3 8 14.2 24 20.6 6.4 9 15.1 27 20.0 4.9 10 15.9 30 18.6 2.6 11 15.8 33 16.0 0.2 12 15.8 36 14.7 -1.0 13 15.7 39 12.9 -2.7 14 15.6 42 10.0 -5.5 note: 1. t = 25 c. refer to ?ultiplier biasing and operation?section for bias conditions for operation as a multiplier.
6 AMMC-5040 typical scattering parameters [1] (t chuck = 25 c, v dd = 4.5v, i dd = 300 ma, z in = z out = 50 ? ) freq. s 11 s 21 s 12 s 22 ghz db mag ang db mag ang db mag ang db mag ang 2.045 -15.17 0.174 -11 -24.59 0.059 130 0.00 0.000 -94 -0.77 0.915 -28 3.045 -15.12 0.175 -21 -12.70 0.232 5 -119.33 0.000 -1 -1.30 0.861 -40 4.045 -16.33 0.153 -23 -7.42 0.425 -146 -79.88 0.000 -156 -2.55 0.746 -51 5.045 -15.91 0.160 -23 -23.80 0.065 89 -79.88 0.000 0 -2.26 0.771 -54 6.045 -15.32 0.171 -28 -20.96 0.090 104 -80.00 0.000 -62 -2.66 0.736 -65 7.045 -15.04 0.177 -36 -22.62 0.074 23 -80.00 0.000 -75 -2.93 0.714 -72 8.045 -15.02 0.177 -44 -32.63 0.023 0 -80.00 0.000 -5 -2.91 0.715 -81 9.045 -15.06 0.177 -51 -37.54 0.013 19 -79.72 0.000 -73 -3.10 0.700 -92 10.045 -15.13 0.175 -57 -40.69 0.009 6 -70.46 0.000 -109 -3.31 0.683 -102 11.045 -15.19 0.174 -64 -34.93 0.018 -113 -70.46 0.000 -127 -3.56 0.664 -112 12.045 -15.24 0.173 -71 -21.52 0.084 -154 -68.05 0.000 -148 -3.79 0.647 -123 13.045 -15.31 0.172 -79 -12.30 0.243 176 -67.96 0.000 -139 -3.97 0.633 -135 14.045 -15.36 0.171 -86 -4.87 0.571 146 -63.04 0.001 -147 -4.27 0.612 -148 15.045 -15.47 0.168 -94 1.65 1.209 115 -60.92 0.001 178 -4.55 0.592 -162 16.045 -15.59 0.166 -103 7.60 2.399 82 -60.05 0.001 170 -4.80 0.575 -178 17.045 -15.74 0.163 -111 13.18 4.562 45 -60.80 0.001 168 -5.01 0.562 162 18.045 -15.93 0.160 -120 18.42 8.337 3 -59.94 0.001 148 -5.25 0.546 135 19.045 -16.31 0.153 -129 22.92 14.001 -46 -59.17 0.001 142 -5.87 0.509 98 20.045 -16.82 0.141 -138 25.67 19.201 -101 -58.42 0.001 142 -7.80 0.407 51 21.045 -17.28 0.137 -149 26.62 21.432 -153 -56.52 0.001 131 -10.92 0.284 4 22.045 -18.39 0.120 -156 26.58 21.318 163 -56.43 0.002 129 -13.81 0.204 -35 23.045 -19.92 0.101 -159 26.44 20.994 125 -54.46 0.002 110 -16.17 0.155 -63 24.045 -20.37 0.096 -160 26.48 21.078 90 -54.90 0.002 101 -18.24 0.122 -80 25.045 -20.61 0.093 -160 26.46 21.031 56 -54.81 0.002 93 -20.03 0.100 -81 26.045 -20.03 0.100 -160 26.43 20.964 22 -55.44 0.002 73 -20.25 0.097 -74 27.045 -18.87 0.114 -156 25.97 19.873 -11 -54.43 0.002 67 -17.79 0.129 -67 28.045 -17.38 0.135 -168 25.38 18.579 -43 -56.89 0.001 54 -15.30 0.172 -73 29.045 -17.55 0.133 174 24.53 16.837 -72 -59.51 0.001 27 -13.65 0.208 -84 30.045 -18.15 0.124 164 23.74 15.384 -99 -66.02 0.001 39 -12.32 0.242 -98 31.045 -18.91 0.113 155 23.17 14.407 -124 -63.24 0.001 85 -11.70 0.260 -113 32.045 -20.15 0.098 148 22.75 13.721 -148 -62.96 0.001 92 -11.40 0.269 -127 33.045 -21.06 0.088 140 22.45 13.260 -174 -58.42 0.001 91 -11.95 0.253 -144 34.045 -22.94 0.071 144 22.15 12.814 164 -62.23 0.001 120 -12.75 0.231 -155 35.045 -24.74 0.058 143 22.16 12.819 141 -56.92 0.001 109 -13.59 0.209 -163 36.045 -27.27 0.043 160 22.51 13.343 117 -54.15 0.002 85 -13.86 0.203 -170 37.045 -24.62 0.059 176 22.99 14.110 90 -56.75 0.001 78 -13.87 0.203 177 38.045 -22.97 0.071 178 23.23 14.505 61 -54.49 0.002 73 -14.15 0.196 162 39.045 -22.55 0.075 168 22.94 14.022 31 -53.44 0.002 86 -15.02 0.177 146 40.045 -22.63 0.074 167 22.33 13.075 3 -51.15 0.003 68 -15.50 0.168 131 41.045 -24.00 0.063 164 21.78 12.275 -23 -52.29 0.002 63 -15.82 0.162 117 42.045 -25.45 0.053 168 21.48 11.861 -50 -51.10 0.003 54 -14.49 0.189 104 43.045 -27.06 0.044 -171 21.17 11.442 -78 -51.37 0.003 45 -12.76 0.230 84 44.045 -25.94 0.050 -139 20.75 10.907 -107 -51.37 0.003 43 -11.21 0.275 63 45.045 -22.48 0.075 -123 20.32 10.371 -136 -51.99 0.003 41 -9.70 0.327 44 46.045 -20.26 0.097 -112 19.51 9.453 -166 -49.59 0.003 22 -8.14 0.392 24 47.045 -15.70 0.164 -103 19.00 8.917 165 -50.75 0.003 18 -7.25 0.434 7 48.045 -11.42 0.269 -106 18.44 8.355 134 -53.08 0.002 17 -6.43 0.477 -8 49.045 -7.83 0.406 -113 17.70 7.677 101 -54.51 0.002 6 -5.73 0.517 -22 50.000 -4.72 0.581 -124 16.85 6.955 69 -54.43 0.002 13 -5.20 0.550 -34 note: 1. data obtained from on-wafer measurements.
7 AMMC-5040 typical scattering parameters [1] (t chuck = 25 c, v dd = 4.5v, i dd = 350 ma, z in = z out = 50 ? ) freq. s 11 s 21 s 12 s 22 ghz db mag ang db mag ang db mag ang db mag ang 17.045 -15.90 0.160 -111 13.73 4.857 45 -61.03 0.001 168 -4.89 0.569 162 18.045 -16.10 0.157 -120 19.07 8.981 3 -59.90 0.001 148 -4.99 0.565 135 19.045 -16.50 0.150 -129 23.92 15.696 -46 -59.17 0.001 142 -5.06 0.558 98 20.045 -17.08 0.140 -138 27.37 23.362 -101 -59.17 0.001 142 -6.08 0.496 51 21.045 -17.41 0.135 -149 28.96 28.054 -153 -57.08 0.001 131 -8.51 0.375 4 22.045 -18.78 0.115 -156 29.01 28.221 163 -56.48 0.002 129 -11.29 0.273 -35 23.045 -20.82 0.091 -159 28.73 27.316 125 -54.47 0.002 110 -13.84 0.203 -63 24.045 -21.45 0.085 -160 28.65 27.069 90 -54.94 0.002 101 -16.02 0.158 -80 25.045 -21.92 0.080 -160 28.56 26.789 56 -54.94 0.002 93 -18.15 0.124 -81 26.045 -21.45 0.085 -160 28.55 26.759 22 -55.35 0.002 73 -19.22 0.109 -74 27.045 -20.21 0.098 -156 28.13 25.497 -11 -54.46 0.002 67 -17.68 0.131 -67 28.045 -18.06 0.125 -168 27.69 24.224 -43 -57.03 0.001 54 -15.15 0.175 -73 29.045 -17.86 0.128 174 26.95 22.266 -72 -58.31 0.001 27 -13.32 0.216 -84 30.045 -18.39 0.120 164 26.21 20.450 -99 -67.65 0.000 39 -11.78 0.258 -98 31.045 -19.04 0.112 155 25.65 19.164 -124 -63.27 0.001 85 -11.03 0.281 -113 32.045 -20.32 0.096 148 25.17 18.142 -148 -63.18 0.001 92 -10.68 0.293 -127 33.045 -21.10 0.088 140 24.88 17.541 -174 -59.22 0.001 91 -11.06 0.280 -144 34.045 -23.60 0.066 144 24.53 16.846 164 -62.19 0.001 120 -11.85 0.256 -155 35.045 -25.31 0.054 143 24.49 16.767 141 -57.76 0.001 109 -12.74 0.231 -163 36.045 -30.41 0.030 160 24.81 17.394 117 -54.43 0.002 85 -13.14 0.220 -170 37.045 -27.92 0.040 176 25.38 18.567 90 -57.60 0.001 78 -13.17 0.220 177 38.045 -25.80 0.051 178 25.75 19.376 61 -55.00 0.002 73 -13.64 0.208 162 39.045 -24.94 0.057 168 25.56 18.956 31 -54.00 0.002 86 -14.93 0.179 146 40.045 -25.03 0.056 167 25.03 17.850 3 -51.42 0.003 68 -15.86 0.161 131 41.045 -26.05 0.050 164 24.59 16.970 -23 -52.75 0.002 63 -16.32 0.153 117 42.045 -27.13 0.044 168 24.45 16.696 -50 -51.37 0.003 54 -14.81 0.182 104 43.045 -29.59 0.033 -171 24.29 16.386 -78 -51.37 0.003 45 -13.01 0.224 84 44.045 -29.99 0.032 -139 24.07 15.984 -107 -51.39 0.003 43 -11.47 0.267 63 45.045 -26.40 0.048 -123 23.89 15.652 -136 -52.38 0.002 41 -9.86 0.322 44 46.045 -24.89 0.057 -112 23.32 14.648 -166 -49.39 0.003 22 -7.99 0.398 24 47.045 -18.50 0.119 -103 23.14 14.361 165 -50.47 0.003 18 -7.07 0.443 7 48.045 -13.21 0.219 -106 22.81 13.814 134 -52.77 0.002 17 -6.17 0.492 -8 49.045 -9.10 0.351 -113 22.15 12.804 101 -53.15 0.002 6 -5.41 0.537 -22 50.000 -5.48 0.532 -124 21.30 11.608 69 -55.92 0.002 13 -4.88 0.570 -34 note: 1. data obtained from on-wafer measurements.
8 biasing and operation the recommended dc bias condition for the AMMC-5040 is with all four drains connected to a single 4.5v supply and all four gates connected to an adjustable negative voltage supply as shown in figure 15. the gate voltage is adjusted for a total drain supply current of typically 300 ma. figures 1C12 can be used to help estimate the minimum drain voltage and current necessary for a given rf gain and output power. as shown in figure 13, the second, third, and fourth stage dc drain bias lines are con- nected internally and therefore require only a single bond wire. an additional bond wire is needed for the first stage dc drain bias, vd1. only the third and fourth stage dc gate bias lines are connected internally. a total of three dc gate bond wires are required: one for vg1, one for vg2, and one for the vg3/vg4 connection. the internal matching circuitry at the rf input creates a 50-ohm dc and rf path to ground. a block- ing capacitor should be used at the rf input. any dc voltage applied to the rf input must be maintained below 1v. the rf output is ac coupled. no ground bond wires are needed since the ground connection is made by means of plated through via holes to the backside of the chip. frequency multiplier biasing and operation the AMMC-5040 can also be used as a frequency doubler, tripler or quadrupler. as a frequency doubler, the AMMC-5040 provides conversion gain for input signals in the 10 C 23 ghz frequency range for output frequencies of 20 C 46 ghz. similarly, 5 C 10 ghz signals can be quadrupled up to 20 C 40 ghz with some conversion loss. optimum conversion efficiency as a doubler is obtained with an input power level of 3 C 8 dbm. for use as a frequency tripler, an input power level of 14 C 16 dbm is recommended. frequency multiplication is achieved by reducing the bias on the first stage fet to efficiently generate harmonics. the remain- ing three stages are then used to provide amplification. while many bias schemes may be used to generate and amplify the desired harmonics within the AMMC-5040, the following information is suggested as a starting point for multiplier applications. frequency doubling or quadru- pling (generation of even har- monics) is accomplished by biasing the first stage fet at pinch-off by setting vg1 = vp -1.1 volts. the remaining three stages are biased for normal amplification, e.g., vgg is adjusted such that id2 + id3 + id4 250 ma. the drain voltage, vdd, for all four stages should be 3.5 C 4.5 volts. the assembly diagram shown in figure 16 can be used as a guideline. to operate the AMMC-5040 as a frequency tripler (odd har- monic), the device is biased as shown in figure 17. the drain voltage for the first stage fet is biased separately with vd1 reduced to 1.1 - 1.2 volts. the drain voltage for the remaining three stages, vd2, vd3, and vd4, should be 3.5 - 4.5 volts. all four gate voltages, vgg, are set to approximately C 0.6 volts. if desired, vgg can be adjusted to minimize second harmonics. improved multiplier performance can be obtained by biasing both the gate and drain voltages for the first stage separately from stages 2 C 4. in all cases, cb > 100 nf to assure stability. assembly techniques the chip should be attached directly to the ground plane using either a fluxless ausn solder preform or electrically conductive epoxy [1] . for conduc- tive epoxy, the amount should be just enough to provide a thin fillet around the bottom perim- eter of the die. the ground plane should be free of any residue that may jeopardize electrical or mechanical attachment. caution should be taken to not exceed the absolute maximum rating for assembly temperature and time. thermosonic wedge bonding is the preferred method for wire attachment to the bond pads. the rf connections should be kept as short as possible to minimize inductance. gold mesh [2] or double-bonding with 0.7 mil gold wire is recommended. mesh can be attached using a 2 mil round tracking tool and a tool force of approximately 22 grams with an ultrasonic power of roughly 55 db for a duration of 76 8 ms. a guided wedge at an ultrasonic power level of 64 db can be used for the 0.7 mil wire. the recommended wire bond stage temperature is 150 2 c. the chip is 100 mm thick and should be handled with care. this mmic has exposed air bridges on the top surface. handle at edges or with a custom
9 collet (do not pick up die with vacuum on die center.) this mmic is also static sensitive and esd handling precautions should be taken. for more information, see agilent application note 54 gaas mmic esd, die attach and bonding guidelines. figure 13. AMMC-5040 simplified schematic diagram. notes: 1. ablebond 84-1 lm1 silver epoxy is recommended. 2. buckbee-mears corporation, st. paul, mn, 800-262-3824 v g1 v g3 v d3 v d4 v d2 v g2 v d1 v g4 in out matching matching matching matching matching
10 figure 14. AMMC-5040 bonding pad locations (dimensions in microns). figure 15. AMMC-5040 assembly for normal amplifier applications with single drain and single gate supply connections. figure 16. separate first-stage gate bias for using the AMMC-5040 as a frequency doubler or quadrupler. this diagram also shows an option to the vg 2 jumper bonding scheme used in figure 15. 490 90 rfin 0 300 rfout 0 101 697 1342 1479 1720 1631 v g1 v g3 v g4 v d4 1174 v d3 930 v d2 700 v g2 540 v g2 420 88 760 670 v d1 gold plated shim (optional) to v gg dc gate supply to v dd dc gate supply 100 pf 100 pf rfin v g2 to v g3 jumper (or use seperate v g2 bond as shown in figure 16) rfout cb cb to v g1 dc gate supply to v g2 to v g4 dc gate suppl y to v dd dc gate supply 100 pf 100 pf 100 pf rfin rfout cb cb cb
figure 17. separate first-stage gate and drain bias for using the AMMC-5040 as a frequency tripler. www.agilent.com/semiconductors for product information and a complete list of distributors, please go to our web site. for technical assistance call: americas/canada: +1 (800) 235-0312 or (916) 788-6763 europe: +49 (0) 6441 92460 china: 10800 650 0017 hong kong: (65) 6756 2394 india, australia, new zealand: (65) 6755 1939 japan: (+81 3) 3335-8152(domestic/international), or 0120-61-1280(domestic only) korea: (65) 6755 1989 singapore, malaysia, vietnam, thailand, philippines, indonesia: (65) 6755 2044 taiwan: (65) 6755 1843 data subject to change. copyright ? 2005 agilent technologies, inc. obsoletes 5988-9901en january 18, 2005 5989-2284en to v g1 dc gate supply to v g2 to v g4 dc gate supply to v d2 to v d4 dc drain supply to v d1 dc drain supply rfin rfout


▲Up To Search▲   

 
Price & Availability of AMMC-5040

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X